Themes: What is implicit differentiation?
Application: Related rates.
[1] For the curve defined by $x^{4}+y^{3}+a x y+b=0$, the derivative $\frac{d y}{d x}$ at the point $(0,1)$ is -2 . Determine the product $a b$.
[2] Consider the curve defined by the equation $\sqrt[3]{x}+a \sqrt[3]{y}=29$. At the point $(8, b)$ on this curve, the slope of the tangent line is $\frac{27}{4}$. Determine the values of the constants a and b.
[3] Consider the parametric equations $x=\frac{1-t^{2}}{1+t^{2}}$ and $y=\frac{2 t}{1+t^{2}}$. If $t=2$, what is the value of the derivative $\frac{d y}{d x}$?
[4] A 5 m ladder is leaning against a vertical wall. Suppose that the bottom of the ladder is being pulled away from the wall at a rate of $1 \mathrm{~m} / \mathrm{s}$. How fast is the area of the triangle underneath the ladder changing at the instant that the top of the ladder is 4 m from the floor?
[5] Extension question: A lighthouse containing a revolving beacon is located 3 km from P, the nearest point on a straight shoreline. The beacon revolves at a constant rate of 4 revolutions per minute and throws a spot of light onto the shoreline. How fast is the spot of light moving when it is
(a) at P ?
(b) at a point on the shoreline 2 km from P ?

Note: $\frac{d}{d \theta} \tan \theta=\sec ^{2} \theta$

Suggested solutions: Implicit Differentiation

[1] The given curve passes through the point $(0,1)$. From the equation $1+b=0$, it follows that $b=-1$.

Next, we implicitly differentiate the given curve's equation:

$$
4 x^{3}+3 y^{2} \frac{d y}{d x}+a y+a x \frac{d y}{d x}=0
$$

Rearranging terms, we get:

$$
\frac{d y}{d x}\left(3 y^{2}+a x\right)=-4 x^{3}-a y
$$

This simplifies to:

$$
\frac{d y}{d x}=-\frac{4 x^{3}+a y}{3 y^{2}+a x} .
$$

We are given that the slope $\frac{d y}{d x}$ is -2 at the point $(1,0)$. Substituting these values into the equation, we get:

$$
-2=-\frac{4(1)^{3}+a(0)}{3(0)^{2}+a(1)} .
$$

Simplifying, this leads to $-2=-\frac{4}{a}$, and hence $a=2$.
Finally, since we have $a=2$ and $b=-1$, the product $a b$ is $(2)(-1)=-2$.
[2] The curve intersects the point $(8, b)$, which implies that $a \sqrt[3]{b}=27$. Next, we implicitly differentiate with respect to x, yielding

$$
\frac{1}{3 \sqrt[3]{x^{2}}}+\frac{a}{3 \sqrt[3]{y^{2}}} \frac{d y}{d x}=0
$$

This leads to the derivative

$$
\frac{d y}{d x}=-\frac{\sqrt[3]{y^{2}}}{\sqrt[3]{x^{2}}}
$$

Furthermore, at the point $(8, b)$, the slope is $\frac{27}{4}$. Substituting these values into our derivative equation, we obtain

$$
\sqrt[3]{b^{2}}=-27 a
$$

Solving these equations simultaneously gives us the values $a=-3$ and $b=-729$.
[3] By performing parametric differentiation, we obtain the derivatives of x and y with respect to t as follows:

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{-4 t}{\left(1+t^{2}\right)^{2}} \\
& \frac{d y}{d t}=\frac{-2 t^{2}+2}{\left(1+t^{2}\right)^{2}}
\end{aligned}
$$

To find the derivative $\frac{d y}{d x}$, we use the chain rule, which gives us:

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{-2 t^{2}+2}{-4 t}=\frac{t^{2}-1}{2 t} .
$$

Therefore, at $t=2$, the derivative $\frac{d y}{d x}$ is calculated as:

$$
\frac{d y}{d x}=\frac{2^{2}-1}{2 \cdot 2}=\frac{3}{4} .
$$

[4] Note that the relation is $x^{2}+y^{2}=5^{2}$
Differentiating both sides with respect to t.

$$
\begin{aligned}
2 x \frac{d x}{d t}+2 y \frac{d y}{d t} & =0 \\
2 x \frac{d x}{d t} & =-2 y \frac{d y}{d t}
\end{aligned}
$$

Since $\frac{d x}{d t}=1, \frac{d y}{d t}=-\frac{x}{y}$
At the point where $y=4, x=\sqrt{25-4^{2}}=3$
Hence, $\frac{d y}{d t}=-\frac{3}{4}$.
To find the rate of change of the area, consider $A=\frac{1}{2} x y$
Differentiating both sides with respect to t,

$$
\begin{aligned}
\frac{d A}{d t} & =\frac{1}{2}\left(x \frac{d y}{d t}+y \frac{d x}{d t}\right), \\
& =\frac{1}{2}\left(3 \times \frac{-3}{4}+4(1)\right), \\
& =\frac{-1}{8} .
\end{aligned}
$$

The area is being reduced by $\frac{1}{8} \mathrm{~m}^{2} / \mathrm{s}$.
[5] (a) Construct a triangle with a line with point P and a point off the line L and some other point along the line, and derive $\tan \theta=\frac{x}{3}$. We want to calculate $\frac{d x}{d t}$ when $x=0$ and $\theta=0$.
The beacon revolves at $4 \mathrm{rev} / \mathrm{min}$.
So $\frac{d \theta}{d t}=4 \mathrm{rev} / \mathrm{min}=8 \pi$ radians $/ \mathrm{min}$.
Implicitly differentiating $x=3 \tan \theta$ produces

$$
\begin{aligned}
\frac{d x}{d t} & =3 \sec ^{2} \theta \frac{d \theta}{d t} \\
\frac{d x}{d t} & =3 \sec ^{2} \theta \times 8 \pi \\
& =24 \pi \mathrm{~km} / \mathrm{min} .
\end{aligned}
$$

(b) When $x=2, \tan \theta=\frac{2}{3}$.

Using the equation from part (a).

$$
\begin{aligned}
\frac{d x}{d t} & =3 \sec ^{2} \theta \frac{d \theta}{d t} \\
\frac{d x}{d t} & =3 \sec ^{2} \tan ^{-1}\left(\frac{2}{3}\right) \times 8 \pi \\
& =3 \times \frac{13}{9} \times 8 \pi \\
& =\frac{104 \pi}{3} \mathrm{~km} / \mathrm{min}
\end{aligned}
$$

